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We study the long time behavior of a non-equilibrium infinite particle system in
one dimension. First, we show that the velocity of a particle increases at most
linearly in time. Then we discuss at a heuristic level the displacement of a par-
ticle when the mutual interaction is singular. Finally we study the motion of a
fast particle interacting with a background of slow particles and we prove that
the velocity of the fast particle remains almost unchanged for a long time (at
least proportional to the velocity itself).
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1. INTRODUCTION

In the present paper we study the long time behavior of a non-equilibrium
particle system in one dimension. In particular we investigate three differ-
ent problems. We consider a system of infinitely many particles interacting
via Newton’s law. A phase point of the system is an infinite sequence X=
{xi, vi}i ¥N of positions and velocities and its time evolution is characterized
by the solutions of the Newton equations:

ẍi(t)=C
j ¥N
j ] i

F(xi(t)−xj(t)), i ¥N, (1.1)

where F(x)=−Nf(x) and f is a two-body potential. Equation (1.1) are
complemented by the initial conditions {xi(0), vi(0)}i ¥N. The initial conditions



are chosen in a set sufficiently large to be the support of the states of interest
from a thermodynamical point of view.

We consider a tagged particle and we follow its time evolution.
Obviously its velocity may grow or decrease during the motion in a
complicated way. Here we want to find a bound on it. Actually the time
evolution of similar systems have been studied in the literature in many
papers (see refs. 1–7 and papers quoted there in) as the first step to a
rigorous study of Nonequilibrium Statistical Mechanics. An essential tool to
prove the existence of this evolution consists in the control of the velocity of
each particle in a way which prevents the built up of large densities. Unfor-
tunately the bounds used in these papers are very bad for large times. In the
present paper we want to show a simple bound on the growth of the velocity
that can be obtained by using some unsophisticated (but not trivial) argu-
ments and that remains significant also for large times.The proof consists of
an application in one dimension of some estimates developed by Dobrushin
and Fritz in refs. 2 and 3, that will be used in the form discussed in ref. 1.

The exact statement of the result and the proofs are given in Section 2.
In Section 3 we discuss, as a second problem, at a heuristic level the
displacement of a particle when the two body potential is singular. In
Section 4 we study the motion of a fast particle interacting with a back-
ground of slow particles. We prove that the background cannot slow down
rapidly the fast particle, that conserves its velocity for a very long time.
Finally in the Appendix we report a technical Lemma.

2. BOUNDS ON THE GROWTH OF THE VELOCITY OF A PARTICLE

We consider the system (1.1) and assume that the particles interact by
means of a not negative, short-range, bounded, twice differentiable, two-
body potential f=f(|x|), x ¥ R:

f(0) > 0, f(|x|)=0 if |x| \ r > 0. (2.2)

We believe that the results could be extended to more general interac-
tions, but with more technical efforts. A generalization will be shortly dis-
cussed at the end of this section.

We consider initial data X with a locally finite density and energy.
In order to consider configurations which are typical for thermodynamical
states, we must allow logarithmic divergences in the velocities and local
densities. More precisely, define

Q(X)=sup
m

sup
R : R > log(e+|m|)

Q(X; m, R)
2R

(2.3)
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where

Q(X; m, R)=C
i
q(|xi−m| [ R) 1v

2
i

2
+

1
2

C
j : j ] i

fi, j+12 (2.4)

where here and in the sequel q(A) will indicate the characteristic function
of the set A, and fi, j=f(|xi−xj |).

We consider initial data for which Q(X) <.. It has been shown that
this set has a full measure with respect to any Gibbs state (see ref. 2).

We state now the main result of the present section:

Theorem 2.1. For any fixed Rg > 0, we consider the particles such
that |xi(0)| < Rg. Then there exist two positive constants C1, C2 (C1 depend-
ing onRg andC2 independent of it), such that for these particles

|vi(t)| [ C1+C2t; t \ 0. (2.5)

We remark that the previous bound implies that the effective force
acting (in average) on a very fast particle is bounded by a constant, in spite
of the fact that the infinite size of the system can produce, apriori, large
concentrations and then large forces.

Proof. First we must give sense to the time evolution of a system of
infinite equations. To this purpose, the solution of Eq. (1.1) will be con-
structed by means of a limiting procedure. We define a partial dynamics by
neglecting all the particles outside B(0, n), where B(m, R)={y ¥ R | |y−m|
< R}. More precisely we consider, for a positive integer n, the differential
system:

ẍi(t)=Fi(Xn(t))

xni (0)=xi, vni (0)=vi, i ¥ In,
(2.6)

where

In={i ¥N | xi ¥ B(0, n)},

Fi(Xn(t))= C
j : j ] i

F(xni (t)−xnj (t))
(2.7)

and

Xn(t)={xni (t), v
n
i (t)}i ¥ In (2.8)

is the time evolved finite configuration. We call it n-partial dynamics.
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It can be proved (see the quoted literature) that

Theorem 2.2. Let X={X | Q(X) <+.} and X ¥X. Then there
exists a unique flow tQX(t)={xi(t), vi(t)}i ¥N ¥X satisfying:

ẍi(t)=Fi(X(t)), X(0)=X. (2.9)

Moreover, for all t ¥ R and i ¥N

lim
nQ.

xni (t)=xi(t), lim
nQ.

vni (t)=vi(t). (2.10)

Now we prove the main result. The strategy is the following: we obtain
a bound like (2.5) for the n-partial dynamics and then we extend this result
to the infinite dynamics.

We introduce a mollified version of the energy plus the number of the
particles contained in the interval B(m,R):

W(X; m, R)=C
i
fm, Ri 1

v2i
2
+

1
2

C
j : j ] i

fi, j+12 (2.11)

where:

fm, Ri =f 1 |xi−m|
R
2 (2.12)

and the function f ¥ C.(R+) satisfies:

f(x)=1 for x ¥ [0, 1]

f(x)=0 for x ¥ (2,+.).

and |fŒ(x)| [ 2.
We define

W(X)=sup
m

sup
R : R > log(e+|m|)

W(X; m, R)
2R

(2.13)

Is is obvious that

Q(X; m, R) [W(X; m, R) [ Q(X; m, 2R) (2.14)

so that Q(X(0)) controls W(X(0)) and W(X(t)) controls Q(X(t)).
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The main tool to obtain a bound like (2.5) for the partial dynamics is
the following lemma:

Lemma 2.1.

sup
m

W(Xn(t); m, R(n, t)) [ C3R(n, t) (2.15)

where

R(n, t)=log(e+n)+F
t

0
ds Vn(s) (2.16)

and

Vn(s)=max
i

sup
0 [ y [ s

|vni (y)| (2.17)

From now on Ci denotes a constant independent of t and n.
The proof is essentially contained in ref. 1 and we write it in the

Appendix for completeness.
As a consequence of Lemma 2.1, we have:

Q(Xn(t); m, R(n, t)) [W(Xn(t); m, R(n, t)) [ C3R(n, t). (2.18)

Equation (2.18) allows to control the number N(n, m, t) of the particles in
B(m, R(n, t)) having velocity larger than the quantity

b(n, t)=C4(log(e+n))1/2+12 V
n(t). (2.19)

Indeed, by definition of Q(Xn(t); m, R(n, t)), neglecting some positive
terms, we have:

Q(Xn(t); m, R(n, t)) > 12 [b(n, t)]
2N(n, m, t) (2.20)

By the definition of R(n, t) and inequality (2.15):

N(n, m, t) <
2C3[log(e+n)+tVn(t)]

[C4(log(e+n))1/2+12 V
n(t)]2

. (2.21)

Neglecting positive terms in the denominator, we obtain:

N(n, m, t) <
2C3
C24

+
8C3t

4C4+Vn(t)
(2.22)
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We observe that Vn(t) large implies N(n, m, t) small. We choose C4 such
that 2C3

C24
=1
4 and for Vn(t) \ 32C3t from Eq. (2.22) we get N(n, m, t) [ 12 .

Therefore there are no particles in B(m, R(n, t)) faster than b(n, t). Since
the argument is independent of m, there are no particles faster than b(n, t).
Therefore

Vn(t) [max{32C3t, C4(log(e+n))1/2+12 V
n(t)} (2.23)

which implies that there exist two constants C5, C6 such that

Vn(t) < C5(log(e+n))1/2+C6t, t \ 0. (2.24)

Now we must prove that (2.24), valid for n-partial dynamics, implies
for the infinite dynamics the bound (2.5). To do this, we evaluate the dif-
ference between the partial and the infinite dynamics, when they act on a
particle such that |xi(0)| < Rg or, using a shorter notation, i ¥ Ig.

From the equation of motion written in the integral form we have:

xni (t)−xn−1i (t)=F
t

0
ds(vni (s)−vn−1i (s)) (2.25)

vni (t)−vn−1i (t)=F
t

0
ds 5C

j
F(xni (s)−xnj (s))−C

j
F(xn−1i (s)−xn−1j (s))6 .

(2.26)

Define

di(n, t)=|xni (t)−xn−1i (t)|+|vni (t)−vn−1i (t)| (2.27)

we have, by the Lipschitz property of the force F:

di(n, t) [ C7 F
t

0
ds Cg

j
[di(n, s)+dj(n, s)] (2.28)

where ; g
j means the sum restricted to all particles closer than r (the range

of the interaction) to xni (s) or x
n−1
i (s) for s [ t. It is easy to give a bound to

this quantity. In fact from (2.24) each particle moves at most as

(C5(log(e+n))1/2+C6t) t (2.29)

and hence it can interact only with the particles initially contained in an
interval of size

p(n, t)=2(C5(log(e+n))1/2+C6t) t+2r. (2.30)
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By the definition on Q(X), the number of these particles can be
bounded by the quantity

g(n, t)=Q(X)[log(e+n)+p(n, t)]. (2.31)

Hence, defining

uk(n, t)=sup
i ¥ Ik

di(n, t), (2.32)

we have that:

uk(n, t) [ C8 g(n, t) F
t

0
ds uk1 (n, s), (2.33)

where

k1=Int[k+p(n, t)+1] (2.34)

and Int[ · ] means integer part of [ · ].
We iterate (2.33), starting from the interval [−Rg, Rg] and arriving

close to the interval [−(n−1), n−1], after m steps of size p(n, t). We
choose n > Rg+1. Of course

m \ Int 5(n−1)−Rg

p(n, t)
6 (2.35)

We stop the iterative procedure by means of (2.24) and (2.29). In conclusion

uko (n, t) < C9a(n, t)(C8 g(n, t))m
tm

m!
(2.36)

where

a(n, t)=(C5(log(e+n))1/2+C6t)(t+1) (2.37)

and ko refers to particles in Ig. We choose now a ng-partial dynamics. For
this dynamics bound (2.24) holds. We evaluate the difference between the
velocity of a particle of Ig moving via the ng-partial dynamics and the
infinite one. From (2.36) this difference is bounded by

C
.

n=ng
uko(n, t) < D, (2.38)
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where

D= C
.

n=ng
C9a(n, t)(C8 g(n, t))m

tm

m!
.

We choose

ng=Int[e t+2Rg+2]. (2.39)

Obviously for n \ ng

t < log(e+n) (2.40)

p(n, t) < C10 log2(e+n) (2.41)

g(n, t) < C11 log2(e+n) (2.42)

a(n, t) < C12 log2(e+n) (2.43)

so that, by using the Stirling formula log(n!) > n(log(n)−1), and (2.35),
(2.39), (2.40)–(2.43) we prove that the series in Eq. (2.38) is convergent and
its sum can be easily bounded independently of t. Hence from bound (2.24)
and (2.38) we have

|vi(t)| < C5(log(e+ng))1/2+C6t+D < C5 log(e+ng)+C6t+D. (2.44)

From the definition of ng the proof is achieved. L

Until now we have study bounded interactions. By a small effort, we
can extended Theorem 2.1 to interactions with a powerlike singularity.
More precisely the following result holds:

Theorem 2.3. Let us consider an interaction produced by a two
body potential f=f(|x|), x ¥ R, that we assume to be nonnegative and
short range, i.e., there exists a positive constant such that

f(|x|)=0 if |x| > r. (2.45)

Moreover the potential is twice differentiable if |x| > 0 and there exist two
nonnegative constants a, b such that

f(|x|)=f1(|x|)+a |x|−b (2.46)

where f1(|x|) is twice differentiable.
Then for this interaction the result of Theorem 2.1 holds.
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Proof. The proof is similar to the previous one and we outline only
the two points in which they differ: the proof of Lemma 2.1 and the proof
of (2.28) and on, where we have used the Lipschitz property of the force.

Regarding the proof of Lemma 2.1, we observe that the assumption
(2.46) implies:

|x| |F(x)| [ C13+C14f(|x|) (2.47)

so that from (A.5), after obvious modification in (A.7), we obtain in this
case also (A.9) and subsequent ones.

Regarding to the Lipschitz property of the force, we observe that in
general

|F(x)−F(y)| [ L |x−y|. (2.48)

In the previous case L was a constant, while here it depends on
min{|x|, |y|} and diverges when the minimum goes to zero. But in this limit
the energy also diverges, so that the Lipschitz constant can be controlled by
a power of the Energy of a region containing x and y. This fact implies that
in (2.33) a power of g(n, t) comes out, but this does not change the
remaining steps of the proof. L

3. BOUNDS ON THE DISPLACEMENT OF A TAGGED PARTICLE

In this section we discuss at a heuristic level a problem related to the
one rigorously studied in Section 2.

We consider a particle initially close to the origin and we study its
displacement during the time. Of course its position increases or decreases
in a complicate way. We want to give a bound on its maximal displace-
ment, which remains significant for long time also. Obviously the bound
obtained in Section 2 on the maximal velocity implies that the displacement
increases at most quadratically in time. We discuss now how to improve
this result.

We consider a system of particles interacting via a power-like singular
interaction as in Theorem 2.3 with a, b > 0. The initial data are chosen in a
set smaller than the set X considered in the previous section. Actually a
typical configuration of our set belongs to X. Moreover there are not too
many holes between the particles, in the sense that there is an Rg large
enough such that for any R \ Rg in B(0, R) there are at least const. R par-
ticles. It is possible to convince oneself that all sets of thermodynamical
relevance enjoy this property. Since the order of the particles is fixed, if a
tagged particle has a (large) displacement |s(t)|, also n(t)=const. |s(t)| other
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particles have a displacement of the same order. Of course there is a rela-
tion between the displacement si(t) of a particle and its change in the
kinetic energy Ti(t)=

1
2 vi(t)

2. Indeed by convexity, we obtain:

|si(t)−si(0)| [ F
t

0
|vi(s)| ds [ (2)

1
2 (t)

1
2 1F t

0
Ti(s) ds2

1
2

. (3.1)

In conclusion the time integral of the energy of a region containing
these particles increases during a (large) time t at least as

const.
s2(t)
t

|s(t)|. (3.2)

This quantity must be compared with the time integral of the energy of
the region. We observe that, by Lemma 2.1 and (2.5), the energy is
bounded by const. t2. Hence the time integral of this energy increases at
most like const. t3 and we obtain (for large t)

|s(t)| [ const. t4/3. (3.3)

Of course we do not believe that this bound is optimal. However we
remark that our initial data contain a rigid translation of the system that
trivially gives s(t)=const. t. Hence the exponent of the time dependence
(4/3) in (3.3) does not seem too bad.

It would be interesting to discuss some properties of s(t) and not only
a bound on it, as it has been done for particular systems (see for instance
ref. 8), but it seems too hard.

4. INTERACTION OF A FAST PARTICLE WITH A BACKGROUND OF

SLOW PARTICLES

We consider a system composed by a tagged particle of position and
velocity (x̂, v̂) and mass M, interacting via a two-body force F̂(x̂(t)−xi(t))
with an infinite particle system like that discussed in Theorem 2.1. The
equations of motion read:

Mẍ̂(t)=C
j ¥N

F̂(x̂(t)−xj(t)),

ẍi(t)=C
j ¥N
j ] i

F(xi(t)−xj(t))+F̂(xi(t)− x̂(t)), i ¥N,
(4.1)
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where F̂(x)=−Nf̂(|x|), F(x)=−Nf(|x|) and f̂, f are two-body potentials,
that we suppose twice differentiable, positive, with a short range r̂, r
respectively and f(0) > 0.

The existence and the uniqueness of the solutions of (4.1) is an easy
generalization of Theorem 2.2.

We suppose that initially the fast particle is close to the origin and we
denote by v̂o > 0 its initial velocity. We shall prove that the fast particle
does not loose its velocity until a time proportional to const. v̂o, i.e., the
background cannot slow down the fast particle for a time that becomes
very long as v̂o becomes very large. More precisely:

Theorem 4.1. There exist two positive constants C+, Ĉ such that
for any v̂o

|v̂(t)− v̂o | [ C+ if 0 [ t [ Ĉv̂o. (4.2)

We outline that C+ and Ĉ depend on the initial state of the back-
ground but they are, obviously, independent of v̂o. Theorem 4.1 becomes
significant when v̂o is large.

Proof. For finite v̂o Theorem 4.1 is a trivial consequence of the exis-
tence of the dynamics. Then we assume in the sequel that v̂o is large
enough. From now on we assume v̂o ° a, where a is the maximum of the
modulus of the initial velocity of the particles of the background initially
contained in B(0, 4Ĉv̂2o). Ĉ is a constant that shall be determined later on.
The assumption that initially Q(X) <. implies trivially that a <..
Moreover we define

U= sup
t : 0 [ t [ Ĉv̂o

sup
i ¥ A

|vi(t)| (4.3)

where A is the set of the particles of the background that during the time
[0, Ĉv̂o] enter in the space interval [−3Ĉv̂2o, 3Ĉv̂2o].

The strategy of the proof is the following: we assume that U [ v̂o2 and
until a time T=Ĉv̂o, |v̂(t)− v̂o | remains smaller than

1
10 v̂o. Then we prove

that, for small Ĉ, U [ v̂o4 and, until T, |v̂(t)− v̂o | remains smaller than
1
20 v̂o.

Hence, by continuity, starting from the initial velocity, these assumptions
are actually true. Moreover, if U [ v̂o2 and |v̂(t)− v̂o | is smaller than

1
10 v̂o,

then |v̂(t)− v̂o | must be smaller than a constant, which is the statement of
Theorem 4.1.

The main point in the proof is an easy observation on the interaction
of the fast particle with a slow one alone in the space. It is well known that
the energy and the momentum conservation imply that the scattering
process leaves the velocities unchanged. Thus a slow particle can change
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the velocity of the fast one only if on the slow particle acts an external
force (produced by the other particles of the background). This term can
be sharply estimated as we shall see.

The proof has three main steps.

(i) Step 1.

Consider the n-partial dynamics. We use the estimates of the Appendix
and we proceed as in Section 2 (from (2.18) to (2.24)). Bound (2.24) here
reads:

max
i

sup
0 [ y [ t

|vni (t)| < C15(log(e+n))
1
2+C16t, t \ 0 (4.4)

C15, C16 not depending on v̂o.

(ii) Step 2.

For any particle i, we define ng
i=Int[(e+|xi(0)|) e Ĉv̂o]. Then Eq. (4.4)

gives

sup
0 [ t [ Ĉv̂o

|vn
g
i
i (t)| < C17(log(e+|xi(0)|))

1
2+C18Ĉv̂o (4.5)

where we have used the fact that the square root is a concave function.
Moreover we observe that the infinite dynamics differs from the ng

i

one by a negligible quantity, as we can prove following the steps of the
proof of Theorem 2.1 substituting definition (2.27) by

di(n, t)=|xni (t)−xn−1i (t)|+|vni (t)−vn−1i (t)|+|x̂n(t)− x̂n−1(t)|

+|v̂n(t)− v̂n−1(t)| (4.6)

and studying the problem for t [ Ĉv̂o.
In conclusion for any i,

sup
0 [ t [ Ĉv̂o

|vi(t)| < C19(log(e+|xi(0)|))
1
2+C18Ĉv̂o. (4.7)

Hence, if C18Ĉ < 15 and v̂o is large enough, only the particles initially in
B(0, 4Ĉv̂2o) could enter in B(0, 3Ĉv̂2o) during a time Ĉv̂o and interact with
the fast particle. Moreover these particles have a velocity smaller than v̂o4 , as
we wanted to prove.

(iii) Step 3.

First we study the problem for the no-partial dynamics with
no=Int[(e+3Ĉv̂2o) e

Ĉv̂2o] and then we consider the infinite case. From here
to formula (4.16) for simplicity we omit to explicit the dependence on no.
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The result of step 2 tells us that the particles of the background until a
time Ĉv̂o (Ĉ small) move with a speed at most 12 v̂o. This means that there is
a gap between the velocity of the fast particle and the velocities of the par-
ticles of the background. We show now that in this situation the back-
ground cannot slow down the fast particle for a long time. More precisely,
in order to study v̂(t) we introduce an other quantity p̂(t), that coincides
with v̂(t) when the scattering process is absent and is slowly varying during
the collision (as it is suggested by a perturbation theory):

p̂(t)=v̂(t)+C
i ¥N

f̂(x̂(t)−xi(t))
M(v̂(t)−vi(t))

. (4.8)

By using the Eq. (4.1), we have

ṗ̂(t)=C
i ¥N

f̂(x̂(t)−xi(t))
M(v̂(t)−vi(t))2

[v̇i(t)− v̇̂(t)]

=C
i ¥N

f̂(x̂(t)−xi(t))
M(v̂(t)−vi(t))2

{F̂(xi(t)− x̂(t))

+ C
j=N
j ] i

F(xi(t)−xj(t))−M−1 C
j=N

F̂(x̂(t)−xj(t))}. (4.9)

Hence

|ṗ̂(t)| [
C20
v̂2o

N2(t) (4.10)

where N(t) is the number of particles contained in the interval of center in
x̂(t) and size 4 max(r, r̂). Hence

|p̂(Ĉv̂o)− p̂(0)| [
C20
v̂2o

F
Ĉv̂o

0
N2(t) dt. (4.11)

Now we observe that the positivity and the smoothness of the poten-
tial in the origin implies that N2(t) is smaller than a constant times the
energy of a region B(x̂(t), 2 max(r, r̂)):

N2(t) [ C21Q(X(t); x̂(t),max(r, r̂)) [ C21W(X(t), 0, 2Ĉv̂2o) [ C22Ĉv̂2o,
(4.12)

where we have used the result proved in the Appendix. Moreover the par-
ticles of the background that contribute to N(t) cannot contribute to N(tŒ)
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if |t− tŒ| v̂o
9
10 > 2 max(r, r̂)+12 v̂o |t− tŒ|, that is |t− tŒ| > C23 v̂

−1
o . Hence each

particle of the background which interacts with the fast one contributes to
the integral > Ĉv̂o0 N(t) dt by an amount smaller than const. v̂−1o . Since the
number of these particles is smaller than C24Ĉv̂2o, we have

F
Ĉv̂o

0
N(t) dt [ C25Ĉv̂o. (4.13)

Hence, by using (4.12) and (4.13), we have

F
Ĉv̂o

0
N2(t) dt [ ( sup

0 [ t [ Ĉv̂o

N(t)) F
Ĉv̂o

0
N(t) dt [ C26 v̂

2
oĈ

3
2. (4.14)

So that, from (4.11) it follows

|p̂(Ĉv̂o)− p̂(0)| [ C27Ĉ
3
2. (4.15)

Finally

|v̂(t)− v̂o | [ |v̂(t)− p̂(t)|+|p̂(t)− p̂(0)|+|p̂(0)− v̂o |. (4.16)

We consider the three terms of the right hand side. The first and the
third ones by definition (4.8) and (4.12) are bounded by C28Ĉ

1
2 for 0 [ t [

Ĉv̂o, while the second term is bounded by (4.15).
We conclude that the fast particle almost conserves its velocity, so that

the assumption that v̂(t) [ 9
10 v̂o is true and then for this partial dynamics

the Theorem is valid. Since the difference between this partial dynamics
and the infinite one is negligible, Theorem 4.1 is proved. L

In the previous Theorem we have proved that there exists a constant Ĉ
such that the result is true. Actually we have proved more:

Corollary 4.1. There exist a constant C̃ such that, for any positive
y [ Ĉ, provided v̂o is large enough (i.e., larger than a quantity depending
on y), we have:

|v̂(yv̂o)− v̂o | [ C̃y
1
2. (4.17)

APPENDIX

We consider the system defined by Eqs. (4.1). The case discussed in
Section 2 is recovered by putting f̂=0. When f̂ ] 0, we assume that U [ v̂o2
and v̂(t) > 9

10 v̂o. We prove Lemma 2.1.
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For 0 [ s [ t [ T, we define

R(n, t, s)=log(e+n))+F
t

0
Vn(y) dy+F

t

s
Vn(y) dy (A.1)

(note that R(n, t, t)=R(n, t) and R(n, t, 0) < 2R(n, t)) and compute the
derivative with respect to s of the quantity:

W(Xn(s); m, R(n, t, s))=C
i
fm, R(n, t, s)i
5v2i
2
+

1
2
C
j ] i
fi, j+f̂(xi−x̂)+16 .

(A.2)

We have:

Ẇ(Xn(s); m, R(n, t, s))

=C
i
fŒ 1 |xi−m|

R(n, t, s)
2 1 x̂mi · vi

R(n, t, s)
−

Ṙ(n, t, s)
R2(n, t, s)

|xi−m|2

×5v
2
i

2
+

1
2
C
j ] i
fi, j+f̂(xi−x̂)+16

+C
i ] j

fm, R(n, t, s)i
1viFi, j−

1
2
Fi, j(vi−vj)2+C

i
fm, R(n, t, s)i v̂F̂(xi−x̂).

(A.3)

In (A.3) we neglect the explicit dependence on s (and n) of xi and vi
and denote by x̂mi the unit vector in the direction of (xi−m).

We note that the first term in the right hand side of (A.3) is not positive.
IndeedfŒ [ 0, |xi−m| > R , |vi | [ Vn(s) and Ṙ(n, t, s)=−Vn(s) so that:

x̂mi · vi
R(n, t, s)

−
Ṙ(n, t, s)
R2(n, t, s)

|xi−m| \ −
|vi |

R(n, t, s)
−
Ṙ(n, t, s)
R(n, t, s)

\ 0. (A.4)

On the other hand the second term is (by using Fi, j=−Fj, i):

1
2 C
i ] j

fm, R(n, t, s)i (Fi, j · (vi+vj))=
1
2 C
i ] j

(fm, R(n, t, s)i −fm, R(n, t, s)j )(Fi, j · vi). (A.5)

By the obvious inequality:

|fm, R(n, t, s)i −fm, R(n, t, s)j | [ 2R(n, t, s)−1 |xi−xj |, (A.6)
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the modulus of the quantity in (A.5) is bounded by

−C29
Ṙ(n, t, s)
R(n, t, s)

C
i ] j
q(|xi−xj | < r)

×q(|xi−m| < 2R(n, t, s)+r) q(|xj−m| < 2R(n, t, s)+r)

[ −C29
Ṙ(n, t, s)
R(n, t, s)

C
i ] j
q(|xi−xj | < r)

×q(|xi−m| < 4R(n, t, s)) q(|xj−m| < 4R(n, t, s)), (A.7)

where from now on we have chosen R \ 2 max(r, r̂)+1. This is possible
without loss of generality because we are looking for properties valid for
large R.

The superstability of the interaction (i.e., f(x) \ 0, f(0) > 0) implies

C
i ] j
q(|xi−xj | < r) q(|xi−m| < 4R(n, t, s)) q(|xj−m| < 4R(n, t, s))

[ const.W(Xn(s); m, 4R(n, t, s)). (A.8)

For the proof of (A.8) see [1, Lemma 2.1(iii)].
Hence

Ẇ(Xn(s); m, R(n, t, s))

[ −C30
Ṙ(n, t, s)
R(n, t, s)

W(Xn(s); m, 4R(n, t, s))+C
i
fm, R(n, t, s)i |v̂F̂(xi−x̂)|.

(A.9)

We state a property of W. We observe that

W(X; m, 2R) [ C
|n| [ 2

W(X; m+2nR, R) (A.10)

because any term of the left hand side is equal or bounded by a term of the
right hand side. Moreover the other terms of this side are positive.

Setting:

W(X; R)=sup
m ¥ R

W(X; m, R), (A.11)

we have

W(X; m, 2R) [ 5W(X, R) (A.12)
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From (A.12), the differential inequality (A.9) becomes

Ẇ(Xn(s); m, R(n, t, s))

[ −C31
Ṙ(n, t, s)
R(n, t, s)

W(Xn(s); R(n, t, s))+C
i
fm, R(t, s)i |v̂F̂(xi−x̂)|,

(A.13)

so that

W(Xn(s); m, R(n, t, s))

[W(Xn(0); R(n, t, 0))+5−C31 F
s

0
dy

Ṙ(n, t, y)
R(n, t, y)

W(Xn(y); R(n, t, y))6

+F
s

0
dy C

i
fm, R(n, t, y)i |v̂F̂(xi−x̂)|]. (A.14)

We observe that in the last integral contribute only particles that ini-
tially are in the interval B(m, 4R(n, t, 0)). The number of these particles is
smaller than W(Xn(0); 4R(n, t, 0)). Moreover the fast particle interacts
with the particle xi for a time proportional to v̂−1o so that

F
s

0
dy C

i
fm, R(n, t, y)i |v̂F̂(xi−x̂)|

[ C32W(Xn(0), m; 4R(n, t, 0)) [ C33W(Xn(0); R(n, t, 0)), (A.15)

where in the last estimate we have used (A.12). We put (A.15) in (A.14), we
take the sup on m, and we solve the differential inequality. We have for
s [ t:

W(Xn(s); R(n, t, s)) [ C34W(Xn(0); R(n, t, 0)) 1R(n, t, 0)
R(n, t, s)
2C31. (A.16)

Since R(t, 0)R(t, s) < 2, we conclude that:

W(Xn(t); R(n, t)) [ C35W(Xn(0); R(n, t, 0)) [ C36Q(X) R(n, t)

[ C37R(n, t). L (A.17)
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